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STATISTICAL INFERENCE IN
FACTOR ANALYSIS

T. W. ANDERSON AND HERMAN RUBIN
COLUMBIA UNIVERSITY AND STANFORD UNIVERSITY

1. Introduction
In this paper we discuss some methods of factor analysis. The entire discussion is cen-

tered around one general probability model. We consider some mathematical problems
of the model, such as whether certain kinds of observed data determine the model unique-
ly. We treat the statistical problems of estimation and tests of certain hypotheses. For
these purposes the asymptotic distribution theory of some statistics is treated.

The primary aim of this paper is to give a unified exposition of this part of factor anal-
ysis from the viewpoint of the mathematical statistician. The literature on factor analysis
is scattered; moreover, the many papers and books have been written from many differ-
ent points of view. By confining ourselves to one model and by emphasizing statistical
inferences for this model we hope to present a clear picture to the statistician.
The development given here is expected to point up features of model-building and

statistical inference that occur in other areas where statistical theories are being de-
veloped. For example, nearly all of the problems met in factor analysis are met in latent
structure analysis.

There are also some new results given in this paper. The proofs of these are mainly
given in a technical Part II of the paper.

In confining.ourselves to the mathematical and statistical aspects of one model, we
are leaving out of consideration many important and interesting topics. We shall not con-
sider how useful this model may be nor in what substantive areas one may expect to find
data (and problems) that fit the model. We also do not consider methods based on other
models. In doing this, we do not mean to imply that the model considered here is the most
useful or important. It seems that this model has some usefulness and importance, it
has been studied considerably, and one can give a fairly unified exposition of it.

Extensive discussion of the purposes and applications (as well as other developments)
of factor analysis is given in books by psychologists (for example, Holzinger and Har-
mon [10], Thomson [23], Thurstone [24]). Some general discussion of statistical inference
has been given in papers by Bartlett [9] and Kendall [12].

PART I. EXPOSITORY

2. The model
The model we consider is

(2.1) X = Af+ U+js,

This work was started while the authors were research associates of the Cowles Commission for
Research in Economics. It has been supported in part by the Office of Naval Research.
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II2 THIRD BERKELEY SYMPOSIUM: ANDERSON AND RUBIN

where X, U, and 4 are column vectors of p components,f is a column vector of M(< p)
components, and A is a p X m matrix. We assume that U is distributed independently of f
and with mean gU = 0 and covariance matrix gUU' = X, which is diagonal. The vec-
torf will in some cases be treated as a random vector, and in other cases will be treated
as a vector of parameters which varies from observation to observation. The vector X
constitutes the observable quantities.

The most familiar interpretation of this model is in terms of mental tests. Each
component of X is a score on a test or battery of tests. The corresponding com-
ponent of js is the average score of this test in the population. The components of f are
the mental factors; linear combinations of these enter into the test scores. The coefficients
of these linear combinations are the elements of A, and these are called factor loading.
Sometimes the elements of f are called common factors because they are common to
several different tests; in the first presentation of this kind of model (Spearman [20]) f
consisted of one component and was termed the general factor. A component of U is the
part of the test score not "explained" by the common factors. This is considered as made
up of the error of measurement in the test plus a specific factor, this specific factor having
to do only with this particular test. Since in our model (with one set of observations on
each individual) we cannot distinguish between these two components of the coordinate
of U we shall simply term the element of U as the error of measurement.

The specification of a given component of X is similar to that in regression theory
(or analysis of variance) in that it is a linear combination of other variables. Here, how-
ever, f, which plays the role of the independent variable, is not observed.
We can distinguish between two kinds of models. In one we consider the vector f to

be a random vector, and in the other we considerf to be a vector of nonrandom quanti-
ties which varies from one individual to another. In the second case it would be more ac-
curate to write Xa = Afa + U + js. In the former case one sample of size N is equiva-
lent to any other sample of size N. In the latter case, however, a set of observations
X1, * - * , xN is not equivalent to xN+1,* - *, x2N because fi, - * *, fN will not be the same
as fN+I, - - *, f2N and these enter as parameters. Another way of looking at this distinc-
tion is that in the latter case we have the conditional distribution of X givenf. The dis-
tinction we are making is the one made in analysis of variance models (components of
variance and linear hypothesis models).
When f is taken as random we shall assume gf = 0. (Otherwise, gX = Agf+ ,

and , can be redefined to absorb ACf.) Let eff' = M. Our analysis will be made entire-
ly in terms of first and second moments. Usually, we shall considerf and U to have nor-
mal distributions. If f is not random, then f = fa for the ath individual. Then we shall
assume usually

0 and M

There is a fundamental, indeterminacy in this model. Let f = Af* (f* = A-1f) and
A* = AA, where A is a nonsingular (m X m) matrix. Then (2.1) can be written as

(2.2) X AT + U + A

where here (when f is random)

(2.3) f*f*' = A-M(A-1)' = M*



INFERENCE IN FACTOR ANALYSIS II3

say. Iff is normal or if we only consider second-order moments, the model with A andf is
equivalent to the model with A* and f*; that is, by observing X we cannot distinguish
between these two models.

Some of the indeterminacy in the model can be eliminated by requiring that gjf' = I,

(or faf. = NI, if f is not random). In this case the factors are said to be orthog-

onal; if M is not diagonal, the factors are said to be oblique. When we assume M = I,
then (2.3) is A-'(A-')' = I (I = AA'). The indeterminacy is equivalent to multiplica-
tion by an orthogonal matrix; this is called the problem of r n. Requiing thatM be
4iagpnal means that the components Qfflare indepgdent!y istrikuted when f is as-
sumed normal. This has an appeal to psychologists because one idea of common mental
fac6ris is (by definition) that they are independent or uncorrelated quantities.
A crucial assumption is that the components of U are uncorrelated. Our viewpoint is

that the errors of observation and the specific factors are by definition uncorrelated.
That is, the interrelationships of the test scores are caused by the common factors, and
that is what we want to investigate. There is another point of view on factor analysis
that is fundamentally quite different; that is, that the common factors are supposed to
explain or account for as much of the variance of the test scores as possible. To follow
this point of view, we should use a different model.

At this point we perhaps should indicate another point of view which we do not treat.
That is that mental factors are positive quantities; any individual has these to some de-
gree; each test score depends on these in a positive way. This implies that all the coeffi-
cients of A are nonnegative. This point of view leads to important and interesting con-
siderations. However, in this paper we shall not consider this.

As in all problems of multivariate statistics, a geometric picture helps the intuition.
We consider a p-dimensional space. The columns of A can be considered as m vectors in
this space. They span some m-dimensional subspace; in fact, they can be considered as
coordinate axes in the m-dimensional space, andf can be considered as coordinates of a
point in that space referred to this particular axis-system. This subspace is called the
factor space. Multiplying A on the right by a matrix corresponds to taking a new set of
coordinate axes in the factor space. I. A`= A A Lo c, l

3. The problems

We now list the considerations which must be made for this model. We point out that
exactly the same considerations enter into other models, for example, latent structure
analysis. For the sake of outlining these problems we shall assume thatf is random and
is aormally distributed with fjf' =J. (M1-)

(I) Existence of the model. From (2.1) we deduce that X is normally distributed with
ean ,u and covariance matrix

(3.1) &(X - )(X - A)' = C(Af+ U)(Af + U)'
/ = ,(Aff'A' + Uf'A' + AfU' + UU')

= Agff'A' + gUU'

Xp-0f- k&/ = AA'+ 2

V,~~
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say. Suppose we have some normal population with mean ,u* and covariance matrix I*,
is there a factor analysis model that can generate this population? Essentially, this is a
question whether the equation I* = AA' + I can be solved, or rather, what conditions
must ,* satisfy so that * = AA' + 2 can be solved. Another way of looking at this
problem leads to the formulation of what is the minimum m for which the equation can
besolved.

(II) Identification. Suppose there is some A and 2 such that * = AA' + 2. Does
this equation then have a unique solution? From the previous discussion it is clear that
the above equation is also satisfied by AO, where 0 is an orthogonal matrix. We can con-
sider (i) if other restrictions are placed on A, is the solution unique, or (ii) are A and 2
determined uniquely except for multiplication of A on the right by an orthogonal matrix?

(III) Determination of the structure. Given 'I [and suppose that (3.1) can be solved
uniquely], how do we determine A and Z?
We now turn to the statistical problems.
(IV) Estimation of parameters. A sample of N individuals is drawn, and from these

observations we wish to estimate ,u, 2, and A. It is assumed that (3.1) can be solved
uniquely and that m is known. One would like to know the properties of various estima-
tion methods.

(V) Test of the hypothesis that the model fits. Here we suppose that m is given. We test
the hypothesis that ,X -u)(X - )' can be of the form AA' + 2.

(VI) Determination of the number offactors. In many situations the number of factors
m cannot be specified in advance of the statistical investigation. In these cases, the in-
vestigator wants to use as few factors as possible to "explain" the population. On what
basis should he decide that he has the right number of factors?

(VII) Other tests of hypothesis. There are various hypotheses about the parameters,
particularly about A, that are of interest.

(VIII) Estimation of factor scores. We want to make statements about the f's of our
observed X's.

4. Problems of the population: Existence of the structure (I)
If f and U are normally distributed, the model postulates that the vector of p test

scores X has a multivariate normal distribution with a vector of means JA and a covari-
ance matrix * which has the form

(4.1) 9 g(X-,u)(X-,u)' = g(Af+ U)(Af+ U) y
= AMA'+ Z r

where 2 is diagonal and positive definite, A is a p X m matrix with m specified, andM is
an arbitrary positive definite matrix of order m. In this case the problem of existence of
the structure is the problem whether the distribution of a vector X has the above form.
The question of normality will not be considered here; the7veffirtof-meansjii-is-un-
restricted and hence is of.no question. The essential question is whether the covariance
matrix of X has the form of (4.1); that is, given the p X p positive definite matrix I,
can it be expressed as Z + AMA' (2 diagonal and A of size p X m)? If f is not normal,
we restrict our considerations to second-order moments, and the essential problem is
the same.

As far as our present problem goes, we can assume that M = I, for if we are given a
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matrix AMA' we can write it as A*A*' by letting A* = AA, where A is a matrix such that
AA' = M. Thus we ask if the-reis5aA a-n-d7u-cthat

(4.2) t = 2 + AA'. V/

One way of determining whether T can be expressed in the desired form is to set about
solving the equations

(4.3) )/ii= + S a, and Oij = XiAjcr i< j.
a1l a14

These are polynomial equations, and there are well-known methods for solving them.
If there is an algebraic solution, one must ascertain that Xi,, are real and rii are real and
nonnegative.
The algebraic solution is laborious and gives little insight. What we want are condi-

tions on ' that can be applied more directly.
A good deal of insight can be obtained by comparing the number of equations with the

number of unknowns [251. In I there are p(p + 1)/2 elements, and this is the number of
equations involving the unknowns aii and Xi.. There are p elements of the diagonal 2, and
there are pm elements of A. However, in any solution A can be replaced by AO, where 0 is
an orthogonal (m X m) matrix, and 0 has m(m - 1)/2 independent elements; that is, in
any solution, A can be made to satisfy m(m - 1)/2 additional conditions. Thus the num-
ber of equations and conditions minus the number of unknowns to be determined is

(4.4) L P(P2 + 2 -P-pm

(p - m) 2-p -m
2

It can be expected that if C _ 0, then an algebraic solution to the equations is possible.
If C > 0, one can expect that no solution is possible; in this case it appears that I must
satisfy some C conditions for a solution to be possible. The inequality C _ 0 can also be
written

(4.5) M 2p+1-V8p+1 p_=. V8p+1-1

Some values of p and [2p + 1- 8 + 11/2 are

2p+1-N8-p+-
p

2

1 0
3 1
5 2.3
6 3
8 4.5
9 5.2
10 6
12 7.6
13 8.4
14 9.2
is 10
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This counting of equations and unknowns gives us a rough criterion of solvability; it
does not, of course, lead to precise necessary and sufficient conditions for solvability.
1~qrone thing we cannot be sure that the equations are independent; another difficulty
is that the solution may not be real or yield nonnegative aii.

It is well known that a necessary and sufficient condition that a p X p matrix A can
be expressed as BB', where B is p X m, is that A be positive semidefinite of rank m.
Thus we can state the following.
THEOREM 4.1. A necessary and sufficient condition that 'I be a covariance matrix of a

factor analysis model with mfactors is that there exist a diagonal matrix 2 with nonnegative
elements such that I -2 is positive semidefinite of rank m.
Now the question is how we can tell whether there exists such a diagonal matrix 2*.

It is instructive to consider the case m = 1. Then we can expect that 'I has to satisfy
C = p(p - 1)/2 - p conditions of equality as well as some inequalities. In this case A
is a column vector and AA' is a positive semidefinite matrix of rank one. The question is
whether we can subtract nonnegative numbers from the diagonal elements of I to give a
positive definite matrix of rank one. I -2 will be of rank one if and only if 2 can be chosen
so that all second-order minors are zero. A second-order minor which does not include a
diagonal element is known as a tetrad and has the form

(4.6) 4|X, h = 4h4ki - 4hAki (h, i, j, k different) .

These must all be zero. A second-order minor which includes one diagonal element has
the form

(4.7) | \6ki C| =4ii aii) I6kj-Iij'Pki (i, j, k different) .

Setting this equal to zero, shows aii must be chosen so

(4.8) ai = Vli _ CjOki (Oki 76 0) .

The conditions that the solution be consistent (that is, independent of the pairj, k) are
the tetrad conditions. Moreover, these conditions insure that second-order minors con-
taining two diagonal elements are zero. It can be shown that p(p - 1)/2 - p of the
tetrad conditions imply 4qij = qiqi (i 5 j), and this in turn implies the tetrad conditions
for all i, j, k, h (all different).

If the tetrad conditions are satisfied, then '-2 will have rank one. If this matrix is
to be positive semidefinite, the diagonal elements must be nonnegative; that is, 4,6ki4,i
Iki >- 0. If 2 is to be positive semidefinite, aii 2 0.
THEOREM 4.2. A necessary and sufficient condition that I be a covariance matrix of a

factor analysis model with one factor is that p(p - 1)/2 - p independent tetrad condi-
tions are satisfied and

(4.9) 0< 444,ij< ,

for one pair (j # k) for each i.
Another way of expressing the condition 4'ki4#ij1/kj _ 0 is to ask whether one can

multiply some rows and corresponding columns by -1 to obtain a matrix with all non-
negative elements.
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The case of one factor is of particular interest. In fact, the original theory of Spearman
was given for one "general" factor.
A similar analysis can be made for the case m = 2. However, the conditions become

more complicated (see [26]).
In section 8 we shall consider the question of determining from the sample whether a

factor analysis model with a given number of factors is adequate to "explain" the situa-
tion. The study of the problem of solvability in the population is of importance for the
insight it gives into the model and for suggestions of how to use the sample to ascertain
whether the model is suitable.

Albert [1] has given a theorem that leads to a direct procedure for determining whether
I- 2 is of rank m. (The procedure does not verify whether I - 2 is positive definite.)
Suppose that m is the maximum rank of the submatrices of I that do not include diago-
nal elements. Then the rows and columns of I can be numbered so

V11 T12 T137
(4.10) T21[ 22 "23

V31 *32 T33J

where Tii, I12 = T',, and '22 are square submatrices of order m and 'If12 is nonsingular.
Then '-2 is of rank m if

(4. 11) *12 = (*II -2MTU' (*22 -2;2),113 = (*11- 1) *2] 23

*32 = *3121' (*22- 2) , *33-24 = T31*721'23 -

Albert [2] has further shown that if I31 and I32 are also of rank m, then there is a unique-
ly determined 2 such that I-2 is of rank m.

5. Problems of the population: Identification (II)
Here we assume that there is at least one solution to ' = 2 + AA', and we ask

whether there is more than one solution. More precisely, we assume that there is at least
one solution satisfying some conditions and ask whether there is more than one solution
satisfying these conditions. Since any solution 2, A can be replaced by 2, AO, where 0 is
orthogonal, it is clear that if we are to have a unique solution, some additional conditions
must be put on A and 2.
We can distinguish between two kinds of sets of restrictions. A set of one kind will not

affect AA', while a set of the other kind may limit AA'. A set of restrictions of the first
kind is essentially a mathematical convenience, for any solution 2, A gives a whole
class of solutions Z, AO and a set of restrictions of the first kind simply picks out of AO a
representative solution. It is fairly clear how we can go from the class of solutions to the
representative one and how we can generate the class from the representative solution.

In section 4 we noted that there are p(p + 1)/2 elements of I, p elements of Z, pm
elements of A and m(m - 1)/2 independent elements of 0. W .exh that
m(m - 1)/2 reetrictions will be needed to eliminate the indeterminacy due to 0. If
C= i[(p --p--- m IjS nonnegative we can then expect identification. If C is
negative, we can expect that -C additional restrictions are necessary for identification;
in this case there should be in all -C + m(m - 1)/2 = p + pm - p(p + 1)/2.

This counting of equations is, of course, inadequate for making precise statements
about identification. We shall now investigate the problem more adequately. It is possible
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to consider conditions on I that imply identification (that is, unique solvability) just as
in the previous section we considered conditions on I for solvability. However, it is more
convenient to consider conditions involving 2 and A for the one assumed solution. We
shall first consider conditions assuming that Z and AA' are determined uniquely.
LEMMA 5.1. If

(5.1) LL' = AA'

where A and L are p X m andA isof rank m, then L= AO, where 0 is orthogonal.
PROOF. The lemma is well known, but we give a proof for the sake of completeness;

methods for finding L subject to certain restrictions are given in section 6. Since A is of
rank m, AA' is of rank m and L must be of rank m. Multiply (5.1) on the right by L(L'L)-
to obtain L = AB, where B = A'L(L'L)-1. Multiplication on the left by (L'L)-1L' shows
I = B'B. Q.E.D.
THEoREm 5.1. A sufficient condition for identification of z and A up to multiplication

on the right by an orthogonal matrix is that if any row of A is deleted there remain two dis-
joint submatrices of rank m.

PROOF. Let ' = L + AA'. To prove the theorem we shall now show that if ' =
S + LL', where S is diagonal and L is p X m, then S = z and LL' = AA'. Since the
off-diagonal elements of AA' and of LL' are the corresponding off-diagonal elements of
I, we only have to show that the diagonal elements of LL' are equal to the diagonal ele-
ments of AA'.

The condition implies that 2m +1 < p. Let

(5.2) A== ) L

where A1 and A2 are nonsingular, and Xm+1 is the (m + l)st row; L is partitioned in sub-
matrices of the same number of rows. Then

A1MA AXlm+l A1A2 A1A3

(5.3) AA' =)_Xm+iAl Xm +l Xm+IA2' Xm+iA3
A2A1 A2)41m+l A2A2 A2A3
LA3A1 A3X)'+1 A3A2 A3A'3

and LL' has the same form. Since A1X,+l, Xn+1A2 and A1A' are off-diagonal, AiXm+, =
Lilm+i, Xm+iA2 = lm+1L, and A1A' = L1L, which is nonsingular (since A1 and A2 are non-
singular). Since LL' is of rank m

Lill'+1 L1L2 Alx'm+l A1A21
(5.4) 0=

Im+lltm+l lm+lL2 lm+11lm+1 Xm+lA2'
= (1) mlm+I'm+lIIAA2I+ f (A) .

Similarly, 0 = (-1)mXm+XiX+1 A1A + f(A). Since A1A21 # 0, lm+ll.+1 = Xnm+X,,+i
In the same fashion, we show that the other diagonal elements of LL' are equal to those
of AA'. This proof is patterned after Albert [1].
We can give a geometric interpretation of this condition. The columns of A are vec-
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tors in p-space; the columns of A after a row is deleted are the projections of the vectors
on the space of p - 1 coordinate axes. We require that the projection of these vectors on
two different spaces of m coordinate axes span the two spaces.

It is fairly clear that the condition is unnecessarily strong in general. After one com-
munality, that is, diagonal element of LL', is determined, it can be used in determin-
ing another. Moreover, the condition that 2m + 1 _ p is much stronger than that C _ 0.
Wilson and Worcester [27] have given an example of p = 6 and m = 3 where one and
only one solution exists.
We now give some theorems that include necessary conditions for identification. It

w;ll be assumed now that 2 is positive definite.
/THEOREM 5.2. Let Cm(A) be a condition on A that is necessary for identification. Then
Cm(AO) for any orthogonal 0 is also a necessary condition for identification.

PROOF. If Cm(A) is not true, there is an S and an L such that

(5.5) AA'+ 2 = LL'+S

and AA' #= LL'. If Cm(AO) is not true, then there is an S* and L* such that

(5.6) (AO)(AO)' + 2 = L*L*' + S*

and AO(AO)' o L*L*', but the equation implies AA' + 2 = L*L*' + S* and
AA' $ L*L*'.
THEOREm 5.3. Let Cm(A) be a condition on A that is necessary for identification. Let A*

be a submatrix formed by taking m* columns of A. Then C* (A*) is a necessary condition
for identification.

PROOF. Let the columns of A be arranged so that A = (A*A**). If C*(A*) is not true,
there is an S and an L* such that

(5.7) A*A*' + 2 = L*L*' + S

and A*A*' i L*L*'. Then (5.5) is satisfied for L = (L*A**) and AA' = A*A*' +
A**A**' 0 L*L*' + A**A**' = LL'.
THEOREm 5.4. Let Cm,p(A) be a condition on A that is necessaryfor identification. Let A*

be the matrix derivedfrom A by deleting the rows that have only zero elements. Then Cm,p*(A*)
is a necessary condition for identification.

PROOF. Let the rows be numbered so

(5.8) A=(A*), (= 2**)' (* TO**)
Then 4 = AA'+2± becomes

(5.9) = A*A*' + 2,

(5.10) =

and only the first involves A* and 2*.
LEMMA 5.2. If p = 2 and m = 1, AA' and 2 are not identified.
PROOF. In this case

((#11 #12\ (a1ll+ 11 X11X21

\l'21 #22 / X21x11 a22+ X21
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If one component of A is 0, say X21, then #12 = #21 = 0 and #22 = 022. Then we can take
522 = 022, 121 = 0, and s11 and 11i as any numbers satisfying sI, + 12 = #11 (_ 0). If
$21 0O, then #12 # 0. Let 121 be any number so that 122/#11 < l2 < #22. Then we take

S22 = #22 - l1, l =2 12/121, and s11 = #11-1ll = #112-21/l1.
THEoREm 5.5. A necessary and sufficient condition for identification if m = 1 is that

at least three factor loadings be nonzero.
PROOF. The necessity follows from lemma 5.2 and theorem 5.4; the sufficiency is a

special case of theorem 5.1.
THEOREM 5.6. A necessary condition for identification is that each column of AA has

at least three nonzero elements for every nonsingular A.
PROOF. For A = I, the result follows from theorems 5.3 and 5.5. Then theorem 5.2

implies the result for A being orthogonal. If A is not orthogonal, suppose AA has less
than three nonzero elements in the vth column. Then the same will be true for an orthog-
onal matrix with vth column proportional to the vth column of A.
LEMMA 5.3. If p = 4 and m = 2, AA' and 2 are not identified.
PROOF. Let the rows of A be numbered so there is a nonzero element in the first row

(theorem 5.6). We can multiply A on the right by an orthogonal matrix so A has the form

/ X11 0
(5.12) A= \~ )( 5 . 1 2) t \~~~~~~1*\2*

where XI, #d 0. All components of X!4 are nonzero by theorem 5.6. We shall now find L of
the form of A so

(all+ 11 I1\ Si) Sll+l ll/ )
(5.1it3)

+ X* xX* = (=~~
B1x1 2*+)1 1 '+12 \2 ' 11,11 S*+11*11 '+ 12 12'

Let 11 = kX1n, where k > 1 and S11 = all + XI, - 12 = all + (1 - k2)X2I > 0. Let
1 = (1/k)X1. Then

S* *1*, * X* *, * X*, *,(5.14) 2 2 1 1 2 2 11

=*+ ( 1-k) \'+ 2 *'

is positive definite. If 1 - 1/k2 is taken small enough, the nondiagonal elements of the
right-hand side of (5.14) have the same signs as the corresponding elements of 22'.
By theorem 4.2 there is a solution of (5.14) for S and 1.
THEOREm 5.7. A necessary and sufficient condition for identification if m = 2 is that if

any row of A is deleted, the remaining rows of A can be arranged to form two disjoint
matrices of rank 2.

PROOF. The sufficiency is a special case of theorem 5.1. To prove the necessity sup-
pose that if we delete the first row of A there are not two remaining disjoint matrices of
rank 2. Let the rows of A be arranged so A can be partitioned as

(5.15) A = A2
wA3i

where A2 is 2 X 2 and of rank at most 2, and A3 is of rank 1. Since A.3 is of rank 1, there
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is an orthogonal matrix 0 such that A30 = (v 0), where v and 0 are vectors of p - 3 com-
ponents. Let

x11 *12

* x\21 2*2

(5.16) AO=A = 21 2

V O .
By theorem 5.6, 422 #- 0 i 4X2. After deleting the first row of A*, we can get two sub-
matrices of rank 2 only in the form

( 5 . 1 7 ) ( \21 X122 (31 X32)
Vi O piVj

The assumption that there are not two such matrices of rank 2 implies that vi = 0 ex-
cept for at most one index i. Then theorem 5.4 and lemma 5.3 imply A* (and A) is not
identified.
THEOREM 5.8. A necessary condition for identification is that for each pair of columns

of AA and for every nonsingular A when a row is deleted, the remaining rows of this two-
column matrix can be arranged to form two disjoint submatrices of rank 2.

PROOF. This follows from theorems 5.2, 5.3, and 5.7.
Now let us consider restrictions that eliminate the indeterminacy of rotation. We

might note in passing that we consider A and A* as equivalent if each column of A* is
obtained by multiplying the column of A by ± 1, for replacing a column of A by its nega-
tive is only equivalent to replacing a factor score by its negative. Each of the following
set of restrictions is convenient for a particular method of solving C = AA' for A (sec-
tion 6) and for a method of estimation.

(a) Triangular matrix of O's. This condition is that

Xii 0 0 .. 0
X21 X22 0 ... 0

(5.18) A=(518A)m Xm2 Xm3 ... Xmm

xpl Xv2 Xp3 X. m

that is, that the upper square matrix is triangular. If we think of a row of A as a vector
in m-space, the condition is that the first row coincide with the first coordinate axis, the
second row lie in the plane determined by the first two coordinate axes, etc.

(b) General triangularity condition. Let B be a given p X m matrix (of rank m). Here
we require that

x 0 0 ...
x x 0 0

(5.19) B'A= X X X 0 .

x x x ... x
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where x indicates an element not specified zero. It is seen that if B' = (I 0), then we ob-
tain condition (a).

(c) Diagonality of A'A. Here we require that A'A be diagonal and that the diagonal
elements of A'A be different and arranged in descending order. Given a positive definite
matrix A, there is a uniquely determined orthogonal matrix 0 (except for multipli-
cation of columns by -1) such that G'AO is diagonal with diagonal elements arranged in
descending order assuming that the diagonal elements (which are the characteristic roots
of A) are different. If A is already in this diagonal form, 0 = I.

(d) Diagonality of A'2-'A. Here we require that A'1-1A be diagonal and that the di-
agonal elements be different and arranged in descending order. Rao [17] has related this
condition to canonical correlation analysis.

The conditions given above are more or less arbitrary ways of determining the factor
loadings uniquely. They do not correspond to any theoretical considerations of psychol-
ogy;,there is no inherent meaning on them. We shall now consider two types of restric-
tioys on A which may have intrinsic meaning; these conditions may also restrict AA'.
ISimple structure. These are conditions proposed by Thurstone for choosing a matrix
out of the class AA that will have particular psychological meaning. If Xi. = 0, then the
ath factor does not enter into the ith test. The general idea of "simple structure" is that
many tests should not depend on all the factors when the factors have real psychological
meaning. This suggests that given a A one should comsideralJLotatisn that is, all matri-
ces AO, where 0 is orthogonal, and choose the one giving most 0 coefficients. `Thisritrix
can be considered as giving the simplest structure and presumably the one with most
meaningful psychological interpretation. It should be remembered that the psychologist
can construct his tests so that they depend on the factors in different ways.

If we do not require Cff' = I, then

(5.20) ,(X -,A)(X-,u)' = 2 + AMA',

where M = Cfff'. Then A* = AA and M* - A-IM(A-1)' also satisfies (5.20), The in-
determinacy here is indicated--hy the nonsingular matrix A. Thurstone has suggested
simple structure as a means of identification in this case also._Of course, one needs to add
a normalization on each component off or on each column of A (as well as an ordering
of the columns of A).

Thurstone (p. 335 of [24]) suggests that the matrix A should be chosen so that there
is a submatrix of A (obtained by deleting rows of A) say A with the following properties:
(1) Each row of A should have at least one zero element. (2) Each column of A should
have zero elements in at least m rows and these rows should be linearly independent.
(It should be pointed out that the desired linear independence is impossible because
these rows have zero elements in a given column out of m columns and hence the sub-
matrix of these rows can have maximum rank of m - 1.) (3) For every pair of columns
of A there should be several rows in which one coefficient is zero and one is nonzero.
(4) For every pair of columns in A a large proportion of rows should have two zero coeff-
cients (if m _ 4). (5) For every pair of columns of A there should preferably be only a
small number of rows with two nonzero coefficients.

It is extremely difficult to study the adequacy of these conditions to affect identifica-
tion. Reiersol [19] has investigated these conditions, modified a bit. He assumes that
there are at least m zero elements in each column of A. Let A(,) (a = 1, m) be the
submatrix of A that has zero elements in the ath column. Reiersol further assumes that
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(i) the rank of A00 is m - 1, (ii) the rank of each submatrix obtained by deleting a row
of AM) is m - 1, and (iii) the addition to A(a) of any row of A not contained in A(,,) in-
creases the rank to m. Then if AA' is identified, a necessary and sufficient condition for
the identification of A is that A does not contain any other submatrices satisfying (i),

?ero elements in si,ecified oositions. Here we consider a set nf ronditons that reires
Ff the investigator more a priori information. He must know that some tests do not de-
pend orr some factors. In this case the conditions are that Xi, = 0 for certain pairs
(i, a); that is, that the ath factor does not affect the ith test score. In this case we do
not assume that gff' = I. These conditions are similar to some used in econometric
models. The coefficients of the ath column are identified except for multiplication by a
scale factor if (A) there are at least m - 1 zero elements and (B) the rank of A(,) is
m - 1 (see [13]).

It will be seen that there are m normalizations and a minimum of m(m - 1) zero con-
ditions. This is equal to the number of elements of A. If there are more than m - 1
zero elements specified in one or more columns of A, then there may be more conditions
than are required to take out the indeterminacy in AA; in this case the conditions may
restrict AMA'.

Lacal identification. We can ask the question, when we suppose there is a 2 and a A
satisfying T = 2 + AA' and some other conditions such as A'Z-1A being diagonal, is
there another pair of such matrices in the neighborhood of 2, A? In other words, if we
change 2 and A by small amounts, does 2 + AA' necessarily change? If 2 + AA' does
change, then we say that 2 and A are locally identified. We can give a sufficient condi-
tion for this.
THEOREm 5.9. Let b = 2- A(A'2;-A)-1A'. If 1I0j1 F$ 0, then Z and A are locally

identified under the restriction that A'Z-1A is diagonal and the nondiagonal elements are
different and arranged in descending order of size.

PROOF. Let 'I = 2 + AA'. Then any pair of matrices 2, A* satisfying I =
2* + A*A*' and A*'2I*-iA* diagonal must also satisfy

(5.21) A*(I+ r*) = T2-_ A*,
(5.22) diag *= diag ( -A*A*'),
(5.23) A*'2*-1A* r*

and the condition that r* is diagonal. As will be seen later, the above equations are anal-
ogous to a set of equations defining some estimates. These equations define A* and 2*
implicitly. We shall show that from these equations one can find the set of partial deriva-
tives (.9f*ii)/(O'jk), (Cx14)/(a,jk)- Under the conditions of the theorem the matrix of
partial derivatives is of maximum rank. (equal to the number of elements in 2, A); this
is proved in section 12. The Taylor's series expansion for 2 and A* in terms of T is

(5.24) (Z* - 2, A* - A) = L(I* --T)

where L is a linear function. The right-hand side is zero if and only if the left-hand side
is zero. Q.E.D.

In a sense the study of identifiability is of more relevance than the study of solvability,
for identification requires that the investigator specify some features of the model and
he wants to know how to do this. As far as solvability goes, in principle, he either has it
or he does not, and there is nothing for him to do about it.
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6. Problems of the population: Determination of the structure (M)
The study of solvability and identification implies methods of solving for the structure,

given the population of the observables. If the conditions of theorem 5.1 are satisfied,
then the communalities can be determined as indicated in the proof of that theorem;
this determines AA' = C, say. Let A = (X(1)X(2) ... X(m)), where MO is the ath column
of A. Then

(6.1) C = X(1)X(l)l + X(2))X(2)' + + X(m)"'(m)f

In many cases one determines the MO)'s successively. After XV') is found, we define C(')=
C - (1)(1)' = X(2)X(2)' + . . . + (m)X(m)', and proceed to find X(2). In turn we define
00 = C(a-1)- XORWO' and find ),(Xf+i). The methods depend on the identification con-
ditions.

(a) Triangularity conditions. Since the first components of A * * X(m) are zero,
the first column of C is X)X1i); X11 is determined from cil = Xl2 and the rest of V1I) is
found from the first column of C. The matrix C(t) = C - X1WXW)' has only O's in the
first row and column; since the first two components of (3), * * * X\(m) are zero, the sec-
ond column of C") is X22X(2); this determines X(2). In turn VA(3), * * *(m) are found simi-
larly.

(b) General triangularity conditions. Let

(f, 0 ... 0
(6.2) F=B'A= f21 J22 . . . 0 (p) . . .

f.1 fr.2 fmm)

(6.3) B = (0() .. b(-)) .

Then CB = AF' = X(I)f(1)' + + X(m)f(m)' and B'CB = FF' ff(l)f(1)' + * * * +
f(m)f(m) . These two matrix equations can be written

(6.4) Cb(Y) = X(l)f1 + + X()faa, a = 1, ,m

(6.5) b(#)'Cb(ca) = folf.1 + +f9of-a, B < a = 1, * , m.

The first column of CB is CbO) = X(')f1j, and the first element of B'CB is b()'Cb) =f-21;
we determine fi, and (I) from these, which only involve b(l). The second column of CB
is Cb(2) - X(1)f2l + X(2)f22 and two more elements of B'CB are bV)T'Cb(2) = filf2l and
b(2)'Cb(2)= f221 + f22; we find f21, f22, and X(2) from these which involve only the first
two columns of B. In turn we find each column of A; the ath column only requires use of
the first a columns of B.

There is an alternative method for finding X(2) after VI1) is found. Let C(')=
C - X'(1)' = X)(2)),(2) + . . . +)(m)),(m)'; then C00b02) = X(2)f22 and b(2)'C("b(2) = f222.
In turn we define C(,,) = C(f-) - XA(a)X(a)' and find X(a+l).

(c) Diagonality of A'A. Let di, * * - , dm be the nonzero roots of IC - dI = 0,
ordered in descending order, and let \a) be the corresponding vectors satisfying
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(C -d.IA(a) = 0 and V)OT(O) = da. (It follows that A(a)'A() = 0, a 5d (3.) If A =
(A(l) * A(^)) and D = (da&0), then the equations can be written

(6.6) CA = AD,
(6.7) A'A= D.

These equations (and the fact that D is diagonal with ordered elements) determine
A and D uniquely. Since A = A satisfies the equations (CA = AA'A = A(A'A)), it is
the unique solution.

(d) Diagonality of A'Z-'A. Let di, , dm be the nonzero roots of CT21 - dl = 0
(that is, of IC - d22 = 0) ordered in descending order, and let Vf) be the correspond-
ing vectors satisfying (C2: - djI)V1'0 = 0 and V)'1-1V-) = da. These equations can
be summarized as

(6.8) C2-1A =AD,

(6.9) A'2;-'A= D .

These equations (for A and D) have the unique solution A = A and D = A'2-1A.
It will be seen later that there is a relation between a method of estimation and a meth-

od of determining the structure from the population. However, several methods of esti-
mation can be derived without the motivation of finding an analogue to a method for
the population.

7. Problems of statistical inference: Methods of estimation (IV)
7.1. Preliminary remarks. We now consider drawing a sample of N observations on X,

where X = Af + U + ,u, where f has the distribution N(O, I) and U has the distribu-
tion N(O, 2); that is, N observations from N(,g, 2 + AA'). Let the observations be
xi, * , x,. In all methods of estimation ,u is estimated by

IN
(7. 1) = X.,

which is the maximum likelihood estimate of ,. The estimation of 2 and A is based upon

(7.2) A =-N (-x) (X -x) Xx-N[ - N-Nx- .

As is well known, N A is an unbiased estimate of the covariance matrix of X.

We shall now consider a number of estimation methods for A and L. Later we shall
consider estimation methods whenf is not considered random, butf. is a vector of param-
eters for the ath individual.

7.2. Maximum likelihood estimates for random factor scores when AA' is unrestricted.
Maximum likelihood estimates were derived by Lawley [14] for the case of random fac-
tor scores when the restriction on the parameters is that A'2:-'A is diagonal (and the
diagonal elements are ordered in descending order of size). As was seen earlier this re-
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striction merely takes out the indeterminacy of the rotation in A. The logarithm of the
likelihood function for the sample is

(7.3) -2PN log (2r) 12N log | 2* +A*A*'
N

- E (xa ,-*) ' (* +A*A*')-1 (xa-U*)
a=l

=-IPNlog(27r) N-logIV+A*A*'l-I tr[NA (2*+A*A*')-']
-ILN (x-,u*) '(2* +A*A*') -1 (x-*)

where we write ,u*, 2*, and A* to denote that these are mathematical variables. It will
be noticed that replacing A* by A*O, where 0 is orthogonal, does not change the likeli-
hood function. Thus if we find ,*, V2, and A* to maximize the likelihood functon, then
A*, 2 and A*@ will also maximize it. The restriction that A*'2*-lA* be diagonal is a
convenience here to make the maximizing variables unique (for almost all samples).
When ,u* is set equal to x, the last term on the right of (7.3) vanishes. It is easy to

verify that (for almost all samples) the likelihood function is maximized when the
derivatives (subject to A*'21lA* being diagonal) are set equal to zero. The resulting
equations (after considerable algebraic manipulation) are

(7.4) A(1+ f) = A2-1A,
(7.5) diag 2 = diag (A -AA'),
(7.6) P = A'2-1A
(7.7) nondiag f' = nondiag 0,

where diag B indicates the diagonal matrix formed from the diagonal elements of B and
nondiag B = B - diag B. Equation (7.4) can also be written

(7.8) AP = (A -2)2-1A.

These equations may be compared with (6.8) and (6.9). It is seen that (7.8), (7.6) and
(7.7) are similar to equations defining the characteristic vectors and roots of A in the
metric of 2. A - 2 is the sample analogue of C. It is assumed that the m largest roots
are positive.

The above equations are practically impossible to solve algebraically. Lawley [14]
suggests an iterative procedure which involves approximating 2, then solving for A,
then using this in (7.5) to get a new approximation for 2, etc. In this paper we shall not
discuss in detail computational procedures for any estimates; we hope to consider these
in a later paper.

7.3. Maximum likelihood estimates for random factor scores when AA' is unrestricted
and 2 = a2l; principal components. The assumption that 2 = a2I, that is, that Z is a
diagonal matrix with all diagonal elements equal is not an assumption that would ordi-
narily be suitable, but the assumption leads to an estimate of A that is closely related to
other methods we discuss. Here

( 7. 9) r = A'2-'A = ^ A'A
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The condition that r is diagonal is equivalent to the condition that A'A is diagonal. The
,equations defining the maximum likelihood estimates are

(7.10) A(f+I) =A I^ I)A,
(7 .11) PaV tr (AA-AA') ,

(7.12) f =xv (42 I) A,

(7.13) nondiag P = nondiag 0.

Comparison of these equations with (7.4) to (7.7) shows the effect of assuming 2 = a2I.
We can write the above equations by letting H '-2(P + I) as

(7.14) AHI= AA,
(7.15) p62-= tr (A - AA')
(7.16) H= A'A+ P2I,
(7.17) nondiagH= nondiagO .

Since tr (A - AA') = tr A - tr AA' = tr A - tr A'A = tr A - tr (H - 62I) = tr A
- trH + m&2, we have

(7.18) 6.2= (tr A-tr H) .

Now let us see the relation of the above equation to those defining the characteristic
roots and vectors of A. Let the solutions to IA - dII = 0 be d, > d2 > * * * > d4,
and let 11, * * , ,I be the corresponding characteristic vectors [that is, solutions to
(A - d,I)lj = 0] normalized by l,'l = 1. Let D be the m X m diagonal matrix with
di, * - *, dm as diagonal elements and let L = (11, * * *, 4,). Then

(7.19) AL = LD,
(7.20) L'L = I.

These equations define D and L uniquely (with the condition that the elements of D are
the largest possible). Thus D = H and LA = A, where A is diagonal. Then (p -m)f2

=tr A -tr H di- di =E di. Also
1 1 m+1

(7.21) H-a2I=A'A =A'L'LA =,A2

Thus the ath diagonal element of A, say S., is V/dZ 2, and (a) = d- 24. The
characteristic vectors la are known as the principal components of A. We see here that
these are proportional to the maximum likelihood estimates of A in our model when
2 = a2I. Hotelling [11] suggested this method when 2 = 0, or rather when 2 is very
small; his point of view was that X had an arbitrary normal distribution and Af should
account for most of the variability of X. For our model we should consider his estimate
of A as LD1/2.

7.4. Thomson's modification of the principal component method for random factor scores
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when AA' is unrestricted. For convenience here we require A'A to be diagonal. The equa-
tions are

(7.22) AJ= (A-2)A,
(7.23) diag 2 = diag (A -AA')
(7.24) J = A'A,

(7.25) nondiag J = nondiag 0.

Given 2, the characteristic vectors of A - , corresponding to the largest characteristic
roots constitute the columns of A (normalized according to the diagonal elements of
(7.24), that is, the corresponding characteristic roots). Thus the Thomson method [21]
is essentially the method of principal components applied to A - .

This method can be compared to the maximum likelihood method by seeing that the
maximum likelihood method involves the characteristic vectors and roots of A - 2 in
the metric of S.

7.5. The centroid method. This method is based on the algebra used to find A from C
when A is restricted by B'A being triangular (see section 6). Let 2o be an initial approxi-
mation to 2 and let Co = A - 2o. In applying the algebra described in section 6 we
choose the columns of B, say Bo, in a way that is apparently suitable for this Co. The
first row of Bo is b(1)' = (1, 1, * * 1); then an element of Cob(') is the sum of the elements
of that row of Co and bg1)'Cob(l) is the sum of all elements of CO. We form Co3= Co-
1) t)', and now apply b 2) . The elements of this vector are 1 or -1. They are chosen

so as to make bg2)' Cg1)b(2) as large as possible. The computation of C(1)b(2) is easy because
only addition and subtraction of elements of C"1) are involved. In turn Co = Co1) -
M-Wlg)' is computed, and then \M+') (a = 2, * * , m - 1). Then Ao (k(1) * **m)) is
a first approximation to the estimate of A. Next A - AoA' is computed, and the diago-
nal elements of this matrix (if nonnegative) are taken for 21. Then, the same procedure
is followed to obtain A,, another approximation to the estimate of A. The matrix taken
for B, say B,, need not be the same as Bo (except for the first column). In turn 2i and Ai
are computed until A - AiA is a close enough approximation to 2,.

In a sense the centroid method is an approximation to Thomson's modification of the
principal components method. In that method the first column of A is the characteristic
vector of A - 2 corresponding to the largest characteristic root. This vector is propor-
tional to the normalized vector y (that is, y'y = 1) that maximizes y'(A - 2)y, and y
satisfies (A - 2)y = Jly, where J, is the largest characteristic root of A -S. If the
elements of y are about equal, then y is approximately proportional to b(l), the first col-
umn of B, and hence Jly is approximately proportional to the first vector of A found by
the centroid. Similarly if the second characteristic vector of A - 2 is approximately
proportional to b(2), then it is also approximately proportional to the second column of A
by the centroid method. We can say that the centroid method approximates the prin-
cipal components method by trying to use vectors with elements + 1 as the characteris-
tic vectors of A - .

The big advantage of the centroid method is the ease of computation. Accordingly, it
is the most used method.

7.6. Maximum likelihood estimates for random factor scores when A is identified by
specified zero elements. In this case we have tCff' = M, where M is not required to be
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diagonal. However, we require the diagonal elements to be unity. Certain coefficients of
A are required to be zero, say

(7.26) Xi,, = O, i = i(l, a), * ,i(p.) a), a = , m.

In the ath column of A, there are pa zero elements and these are in rows numbered
i(1, a), - , i(p., a). We assume that these conditions effect identification. We can now
apply the method of maximum likelihood. We write down the resulting equations, in-
serting another unknown p X m matrix J (essentially Lagrange multipliers) which has
zero elements where A does not; that is,

(7.27) jia= 0, i # i(l, a), i(pa, a), a = I,* I m.

The equations are

(7.28) diag 2 = diag (A-AkAl),
(7.29) J'A = O,

(7.30) A'2-1A ' -kAt-1A1IaA' = (AR-1 + A'2-1A)J'2.

The derivation of these equations is given in section 10. We also consider in more de-
tail a special case when m = 2. The above equations cannot be solved algebraically, but
iteration methods can be devised.

7.7. Estimates for nonrandom factor scores when AA' is unrestricted. We now consider
xa(a = 1, , N) to be an observation on

(7.31) Xa= Afa+ U+

where fa is a fixed vector. Then the expected value of Xa is

(7.32) gXa = Afa +sJ

and the covariance matrix is

(7.33) g(Xa- Xa)(X. - 'Xe)x = 2.

This model is similar to the usual model for least squares (or linear regression) except
that here the "independent variates," theft, are unknown; thefa are also parameters.

In one terminology A, y and 2 are considered "structural parameters" because they
affect all the random variables, and the fa are considered "incidental parameters" be-
cause eachf. affects only one Xa. The problem of estimating A is essentially equivalent to
estimating linear equations on the "systematic parts" of X.. Let gX. = {a. The hypoth-
esis that {a is of the form t. = Af. + I. is equivalent to the hypothesis that Pta = y
where P is a (p - m) X p matrix such that PA = 0 and P,u = -y (that is, that (a satis-
fies p - m linear equations).

If we assume U has a normal distribution, the likelihood function is

(7.34) (2X) pNI2 | 2 | N/2 exp[-2E (x-Af--,,) '-1 (x -AfA - A)]

k~~~~~~~~~~~~~~~~~~

(2w)PN/2 0.N/2 exp l- ,.Li ) ]

The likelihood function does not have a maximum. To show this, let , = 0, X, = 1,
Xi, = 0, v $ 1, fia = xli. Then the first term in the product in (7.34) is aTll/2. As
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all- 0, this term is unbounded. Thus, the likelihood function has no maximum, and
maximum likelihood estimates do not exist. It might be observed that in [15] Lawley
obtained some estimation equations by setting equal to zero the derivatives of the likeli-
hood function; it is not clear, however, whether these equations define even a relative
maximum, and they obviously cannot define an absolute maximum. (Lawley applied an
iterative method for these equations to some data and found that a o-ii tended towards
zero.)

While we cannot apply the method of maximum likelihood to the distribution of
xi, * * *, x7, to find estimates of all parameters, we can apply the method to the distribu-

tion of A = (x- x) (xa-x) 'to find estimates of A and 2. The distribution of A

is the noncentral Wishart distribution [3] and depends on 2 and

(7.35) 'v (X.a- E xii) (exa..- xI)C = NA; fafA'

when 0fa=O. If N faf then the matrix is AMA'; if we require M = I,

then the matrix is AA'. With some restrictions on A to take out the rotation, 2 and A are
identified.

The application of the method of maximum likelihood to the distribution of A is de-
tailed in section 11. Of the resulting equations, one set ofm is extremely complicated and
cannot be solved explicitly. The other equations are similar to the equations obtained
by applying the method of maximum likelihood to the case of random factors.

The question arises whether the maximum likelihood estimates for the case of random
factors are suitable for the case of nonrandom factors. In section 11 we prove that the
estimates based on maximizing the noncentral Wishart likelihood function are asymptot-
ically equivalent to the maximum likelihood estimates for random factors in the sense
that v'N times the difference of the two respective estimates converges stochastically
to zero. It would, therefore, appear that for large samples in the case of nonrandom fac-
tors one can use the maximum likelihood estimates for random factors.

Another asymptotic result that is proved in Part II is that under certain suitable
identification conditions the asymptotic distribution of the maximum likelihood esti-
\mate of A for random factors is the same whatever the assumption on the factors.

7.8. Units of measurement. In the preceding sections we have considered factor anal-
ysis methods applied to covariance matrices. In many cases the unit of measurement of
each component of x is arbitrary. For instance, in psychological tests, the unit of scoring
has no intrinsic meaning. We now consider how changes in the units of measurement
affect the analysis.

Changing the units of measurement means multiplying each component of x by a
constant; we are interested in cases where not all of these constants are equal. It would
be desirable that when a given test score is multiplied by a constant the factor loadings
for the test are multiplied by the same constant and the error variance is multiplied by
square of the constant. Suppose Dx = x*, where D is a diagonal matrix and not all the
diagonal elements are the same. Then gx* = DI. =-A*, say, and

(7.36) g(x* - A*)(x* - g*)' = D ' D = DA(DA)' + D2D = V ,
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say. Now represent this as

(7.37)

Clearly 2 can be taken as D2D and A*A*' can be taken as DA(DA)' (and must be
taken this way if 2 and AA' are identified), but whether A* can be taken as DA depends
on what kind of restrictions are imposed on A and A* to make each unique. If A (and A*)
is required to have an upper triangular matrix of O's, then so does DA and DA = A*. If
B'A (and B'A*) is required to have an upper triangle of O's, then usually B'DA will not,
and DA $4 A*. If A'A (and A*'A*) is required to be diagonal then usually (DA)'DA =
A'D2A will not, and DA F- A*. If A'2-'A (and A*'2*-A*) is required to be diagonal, then
(DA)'(D2D)-'DA = A'2-'A and DA = A*.
Now let us see how the estimation methods depend on the units of measurement.

Let Dx =x*. Then NA* = (xa- *)(X. - i*)' = NDAD. The equations for
the maximum likelihood estimates of section 7.2 are then

(7.38) A*(I + f*) = DAD2*-'A* ,

(7.39) diag 2 = diag (DAD - A*A*I)
(7.40) p* = A*2*-'*
(7.41) nondiag P* = nondiag 0 .

Clearly A* = DA, and 2* = D2D is the solution [when A and 2 is a solution to (7.4)
to (7.7)]. Then the results of this method do not essentially depend on the units of
measurement.

The second estimation procedure considered assumes 2 = u2I. In the new units
2 = D2D = e2D2 which is not proportional to I and therefore, if this method is appli-
cable to ', it is not applicable to I".

In the third method the transformed equations are

(7.42) A*J* = (DAD -2*)A*
(7.43) diag 2* = diag (DAD -A*A')
(7.44) J* = A*A X

(7.45) nondiag J* = nondiag 0 .

We know that because of (7.44) and (7.45) A" 5£ DAX, but we can ask the question
whether A' = DAP, where P is orthogonal; that is, whether A*A*' = DAA'D (whether
A* defines the same factor space as DA). If A*A*' = DAA'D, then 2* = D2D and
(7.42) can be written

(7.46) (D1A*)]* (A - ±)D2(D-A*)
This indicates that the diagonal elements of J* are the m largest roots of

(7-47) (A -2) -JD-21 = 0 ,

and the columns of LA* are the corresponding vectors satisfying

(7.48) [(A -2)D2-I-JJ(a) = 0 .

However, the roots of (7.47) will, in general, not be the roots of A - 2 and the vectors
satisfying (7.48) will not span the same linear subspace as the first m characteristic vec-
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tors of A - 2. Thus changing the u4ts of measurement will change the estimated fac-
tor space in the Thomson method.J
Now let us consider tiecentroid method. Since we know that if B'A has an upper

triangle of O's, then B'DA in general will not, we ask whether the centroid method ap-
plied to A* = DAD will give A*A*' = DAA'D; that is, whether A* = DAP, where P
is some orthogonal matrix. In the original metric, we have CB = AF', where C =
A - 2 and diag 2 = diag (A - AA'). If A* = DAP, then diag 2 = diag (DAD -
DAA'D) = diag D2D and C* = DOD. Then A*F*'= C*B = DCDB. Let A* = DA.
Then AF*'= (DB and we ask whether A = AP. This can be true in general only if
DB(F*')-1l B(F')-1P; that is, only if DBQ = B for some nonsingular Q. In general,
this is not true (only if the m columns of B lie in an m-dimensional space spanned by
some m characteristic vectors of D). However, in the centroid method the choice of B is
left to the investigator, subject to the conditions that the first column is composed of l's
and the other columns have l's and -l's as elements. Thus, the B* used for A* would
usually not be the B used for A. Then we would need DB*Q = B. While it is hard to de-
scribe exactly how B is chosen by the investigator, we can say roughly that the columns
of B are selected as characteristic vectors of C, and thus the columns of A are approxi-
mately proportional to the first m characteristic vectors of C. But in the latter case we
have shown that the transformation of A to DAD does not transform AA' to DAA'D;
hence, we can conclude that to the extent that the centroid method approximates the
principal components method (applied to C), it does not transform properly with changes
of scale of measurement.

In the case where A is identified by 0 coefficients in specified positions, DA satisfies
the same conditions and hence A* = DA. In estimation J* has O's specified in the same
positions as in J. It is a straightforward matter to show that A* = DA, 2*= 2D,
R* = A, and J* = DJJ satisfy (7.28), (7.29) and (7.30) when A* = DAD.

In the case of nonrandom factor scores we suggest applying the method of maximum
likelihood to the likelihood of A. It can be seen from results in Part II that DA and
D2D satisfy the condition for removing the rotation from A* (and A). The value of the
likelihood function at A, 2, A is the same as at DAD, D2D, DA; hence, the maximum
for A* = DAD is at 2 = D±D, A* = DA when the maximum for A is at 2, A.

As has been noted above, the estimation of A by the centroid or Thomson's principal
components method depends essentially on the units of measurement of the test scores,
even though these units may have no intrinsic meaning. A practical remedy to this un-
desirable indeterminacy is to prescribe a "statistical" unit of measurement. It is custom-
ary to let the sample determine the unit of measurement by requiring that each test
score have sample variance 1. Thus dii is taken to be iiVJ-.. The new matrix is R =

(rij), where rij = aij are the sample correlation coefficients. Besides taking out
the indeterminacy, this convention has some other advantages. From the practical point
of view it is convenient to have the diagonal elements unity and the other numbers be-
tween -1 and +1; this makes it easier to find rules of thumb and convenient computa-
tional procedures.

The centroid method is an approximation to the modified principal components
method. If we compare the equations for the latter with those for the maximum likeli-
hood solution, we see that when 2 is roughly proportional to I, then the principal com-
ponent estimates are close to the maximum likelihood estimates, which have certain de-
sirable properties (for example, asymptotic efficiency). If the transformation to test
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scores with unit sample variance tends to make the error variances (&ii) approximately
equal, then the efficiency of these procedures is presumably improved.'

It might be pointed out that the assumption of section 7.3 that a = I is a little less
restrictive than it seems. Suppose one knows the error variances except for a constant of
proportionality o2. Then 2 = acD2, say, where D-2 is known. Then we can let Dxa = i<*
and apply the principal components method to A* = DAD. It might also be noted that
Whittle [28] has treated the nonrandom factor case under the assumption that 2 = a2I
and has obtained a solution for A in terms of the principal components of A.

7.9. Invariance offactor loadings under changes of factor score populations. Now let us
consider the model X = Af + , + U, where gff' = M is not necessarily required to
be the identity, and where f and U are considered random. Of the various ways of iden-
tifying A (where 2 is identified), consider (a) B'A has an upper triangle of 0's and M = I,
(b) A'A is diagonal and M = I, (c) A'Z-'A is diagonal and M = I, and (d) A has speci-
fied 0's. Only the last does not involve M.
A mathematical factor analysis is supposed to be a representation of some real popu-

lation of individuals from which we sample randomly. In defining such a representation
it is desirable that at least certain parts of the model do not change even though the
population is changed. For example, consider a model for certain mental test scores of a
certain population, say, boys of age 16 in New York State. Then consider a subpopula-
tion, say, boys of age 16 in eleventh grade in New York State. Can the same model apply
to this subpopulation? To put it another way, if one investigator factor-analyzes the first
population and another analyzes the second, what results of the analyses might be com-
mon to the two studies (see also [18])?

If the definition of the subpopulation is independent off and U (that is, does not de-
pend on the factor scores and "errors" including specific factors), then the subpopulation
is a miniature of the first and any model for the first furnishes the same model for the
second. However, in the example above it would seem reasonable that the subpopulation
involves a selection based on the factor scores related to the set of tests considered (as
well as other factors).

Let us consider what happens in the above model if f is replaced by g, where gg = 7y
and g(g - -y)(g - y)' = P. Then in the subpopulation

(7.49) X* = Ag+ Iu = U = A(g- y) + ( + Ay) + U.

The investigator is going to represent this as

(7.50) X* = A*>* + + U*,

where gU* = 0, &f* = 0, gU*U*' = 2*, gf*f*' = M* and A* and M* satisfy the
identification conditions.

Let ,u* = ,u + Ay, U* = U, E:* = 2, and f* = Q(g - y) and A* = AQ-1 for some
nonsingular Q. It is clear that the columns of A* span the same space as the columns
of A. If (d) is used for identification Q must be diagonal, and each column of A* must be
proportional to the corresponding column of A; also qii = 1/p. If the normalization

1 Whittle [281 has suggested that if one assumes the variance of the measurement is proportional to
the error variance, then it is reasonable to use the correlation matrix. In the case of nonrandom factor
scores, he has assumedE , = caii, but finds he is led to principal components of R only in the case

of m= 1.
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of a column of A (and A*) is done by a rule involving only that column (for example, by
means of making a specified element equal to one), then that column of A is equal to
that column of A*. It can also be shown that if simple structure effects identification of A
in the original population, it will in the second and will lead to a A* with proportional
columns. In the case of identification by methods (a), (b), or (c) A* is not related as
simply to A. In each case M* = QPQ' = I. In (a) Q also satisfies B'A* = B'AQ1 = F*
(with upper triangle of O's); in (b) A*'A* = (Q-1)'A'AQ-' is diagonal; in (c) A*'L-lA* =
(Q-1)'A'-'AQ-1 is diagonal. In each of these cases A* will in general not be a rotation
of A. Thus, only if identification does not essentially involve M can one hope that the
results of a factor analysis for one population will bear a simple relation to the results
for another population if the two populations differ with respect to the factors involved.

There seems to have been a considerable discussion by psychologists of the require-
ment that M = I. Some claim that the orthogonality (that is, lack of correlation) of the
factor scores is essential if one is to consider the factor scores as more basic than the test
scores. However, if the factor scores are orthogonal for some population, in general they
will not be orthogonal for another population or for a subpopulation. Hence, this require-
ment would seem to lead to a less basic definition of factors.
We might also consider the effect of the use of correlations in factor analysis on the

comparability of analyses of different populations. In the original population 'I =
AMA' + 2 and R = DLID = (DA)M(DA)' + D2D, where d2j = m ,,Xi;+ aii.

In the second population I = APA' + 2 and R* = D*4*D* = (D*A)P(D*A)' +
D*2D*, where d = iP,,Xi, + aii. Then the relation of the factor loading matrix
of R* to that of R is further complicated by the premultiplication and postmultiplication
of a diagonal matrix that depends on the subpopulation (that is, on P). Thus the use of
correlations instead of covariances makes the comparison of factor loadings in two popu-
lations more difficult.
A question related to the above is what happens to the analysis if tests are added (or

deleted). Let

(7.51) X*= A*f+,u*+ U*,

where X* is a vector of added test scores. Then the entire set consists of the components
of X and X*. We assume EU* = 0, EUU*' = 0, EU*U*' = 2, a diagonal matrix.
What identification conditions leave A unaffected? The conditions in terms of the entire
set of tests are (A'A*')B = A'B + A*'B is a triangular matrix in (a), (A'A*')(A'A*')' =
A'A + A*'A* is diagonal in (b),

(7.52) (A )(O ) A) =A-lA+A*X*-'A*

is diagonal in (c). In general, these will not be satisfied. In (d), however, the restrictions
are the same. Thus in the first three cases addition of new tests will lead usually to a
rotation of A.

7.10. Asymptotic distributions of estimates. For any of the estimation procedures de-
scribed in this paper, it would be desirable to have the distribution of the estimates.
However, in general the exact distribution of any set of estimates is virtually impossible
to obtain. The best we can hope for is an asymptotic distribution theory for a set of
estimates.
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In section 12 we prove that the maximum likelihood estimates given in section 7.2 are
asymptotically normally distributed if the matrix (lij) is nonsingular, where =

-A(A'2-lA)-1A'; the condition is implied by the condition that 2 and A are identi-
fied. Some of the asymptotic variances and covariances are given in section 12. Unfortu-
nately, the variances and covariances of the elements of A are so complicated that they
cannot be used for all the usual purposes.

The asymptotic variances and covariances of the estimates in section 7.3 have been
given by Lawley [16] and the asymptotic normality has also been proved [4]. However,
the assumptions underlying this theory (2 = W21) are so restrictive that it would appear
that the theory is not of much applicability.

In section 12 it is stated that the modified principal component estimates (of section
7.4) are asymptotically normally distributed if (O2j) is nonsingular, where 0 = I -
A(A'A)-'A'. The asymptotic variances and covariances can be found in a fashion similar
to those of the maximum likelihood estimates. Again they are very complicated.

The centroid estimates are not defined explicitly in terms of mathematical operations
because the investigator chooses B somewhat subjectively. Hence, we cannot define any
asymptotic distribution theory. It is possible to formalize the procedure by assuming
that p = k2-, where k is an integer, and defining bYW)' = (1, 1, - * *, 1), b(2) consists of
p/2 l's and p/2 - l's such that YWCOW)b is a maximum, b(3) consists of p/4 l's where
b(2) has l's, p/4 - l's where b(2) has l's, etc., such that bM'C(2)b(s) is a maximum, etc.
This procedure, however, is very difficult to study.

In the case of maximum likelihood estimates when A is identified by zero elements,
the estimates are asymptotically normally distributed. The proof of this theorem (theo-
rem 12.3) is not given because it is extremely complicated.
When the factor scores are nonrandom (section 7.7), it is stated in section 11 that the

estimates based on the distribution of A are asymptotically equivalent to the estimates
given in section 7.2 in the sense that VN'N times the difference of two estimates converges
asymptotically to zero. Thus, as far as asymptotic normality and asymptotic variances
and covariances are concerned, the two methods are equivalent. It follows from theorem
12.1 that these estimates are asymptotically normally distributed.

8. Problems of statistical inference: Tests of hypotheses and determination of the
number of factors
8.1. Test of the hypothesis that the modelfits (V). In the discussion of estimation we have

assumed that the model is proper for the relevant data; in particular, we have assumed
that m, the number of factors, is known. In this section we consider testing the hypoth-
esis that I, the population covariance matrix, can be written as 2 + AA', where A has a
specified number of columns. There are other assumptions of the model, such as nor-
mality, linearity of effects of factors, etc., which may be questioned, but we will not con-
sider them here.

One method of obtaining a test of the hypothesis T = 2 + AA' is to derive the likeli-
hood ratio criterion under the conditions of section 7.2. The likelihood function can be
written

(8.1) L(A, 'I, ,u) = (21r)-vN12 T I -N/2 exp {-[N tr AkJ1 + N(x- M)'Jr1(x-

The alternatives to the hypothesis are that I is any positive definite matrix. Under the
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alternative hypotheses A = x and ' = A. Under the null hypothesis A = x and 4 =
2 + AA', where 2 and A are defined in section 7.2. The likelihood ratio criterion is

(8.2) L (A,2+AA', A)
=

AI N!2eNP12
L (A, A, A) I +AA1 N/2eN tr A(i+,AA)-1/2'

The exponent in (8.2) involves

(8.3) tr A ( +AA') 1P = tr(A-2-AA')(+AA')-
= tr (A - -AA') [i-1 - 2-1A (I +1') -1A'±-1]

= tr (A - - AA') -1-tr (A - - AA')
X ±-1A (I + fl) -lA'2S-

=0

because (7.5) implies the diagonal elements of (A - -AA')1 are 0 and (7.8) im-
plies (A - - AA')2-1A = 0. Because II + PQ I = II + QPI,
(8.4) IS+AA' 12 I+AA'±-' = 121 * I+A'2-,A

=121.- I+f11.
It is convenient to consider (-2) times the logarithm of the likelihood ratio criterion
which is

(8.5) Um= N[log 121 + log II+ fI-logIAI.
The test procedure is to reject the hypothesis if U. exceeds a number; this number is
chosen to give the desired significance level. While the exact distribution of Ur is not
known, the usual asymptotic theory tells us that if (4O; ) is nonsingular Ur is asymptoti-
cally distributed as x2 with number of degrees of freedom equal to C = p(p + 1)/2 +
m(m - 1)/2 - p - pm.

The diagonal elements of f in section 7.2 are the m largest roots of

(8.6) [A -2t- y2 = O.-

Let 7m1 ,* be the other roots of (8.6). Then it can be shown that

(8.7) tr A (2+AA')Y-p= E
i-m+l

(8.8) 1A(i+AA')-I= 1 1+i)
i-mn+1

Thus the criterion is
p

(8.9) Urn -N E log(I+ li).
i-m+l

We can give an intuitive interpretation of this test. 2 and A are found so that A -

(2 + AA') is small in a statistical sense, or equivalently so A - is approximately of
rank m. If A - 2 is approximately of rank m, the smallest p -m roots of (4.6) should
be near zero. The criterion measures in a certain way the deviation of the smallest roots

from zero. The criterion is approximately N E I

i-+1
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This test was proposed by Lawley [14]. Bartlett [6] has suggested replacing the fac-
tor N in the criterion by N - (2p + 11)/6 - 2m/3. It might be noted that to justify
the statement that Ur has an asymptotic x2-distribution it is necessary to verify that
A and 2 have an asymptotic normal distribution (or an equivalent statement).
We can also use the likelihood ratio criterion if the identification is by elements of A

specified zero. Then

(8.10) 1 t'1 = I++AAT'| = I2I.II+AMA'21I
= lI'!I+.I + = I2jrifgj = Al Il-1I IJZI

and by (10.18)
(8.11) tr41A - p = tr(khA-I)

= tr [-1(A-4)- -'AJ'4']
= tr ±-1(A -)-tr 2-AJ'- tr 2AJ'AMA'
= 0

because diag (A-4) = 0, J'A = 0, and diag AJ' = 0. Thus in this case

(8.12) Um=N[log 121 + log IKI-log Itj -logIAII .

When the null hypothesis is true, Ur is distributed as x2 with number of degrees of free-
dom equal to p(p + 1)/2 - p - pm - m(m - 1)/2 plus the number of O's specified
in A (at least m(m - 1)).

Bartlett [6], [81 has proposed another test procedure. Let z1 > Z2 > * > zp be the
roots of
(8.13) JR-zIl = 0.

The criterion suggested is

(8.14) (N- P+ - -m) log p--tr log zi].

This criterion is small if the last p - m roots ofR are nearly equal. It is difficult to relate
this test to the factor analysis model. The test can be expected to be consistent if the
population correlation matrix is of the form a2I + AA'; intuitively the test judges
whether R - AA' is approximately proportional to I (see [4]). Another difficulty with
this procedure is that even its asymptotic distribution is unknown.

There are other ways of deciding whether A - 2- A' is sufficiently small to ac-
cept the hypothesis that I - Z - AA' is zero. As was noted earlier, it is common prac-
tice to apply the centroid method to the correlation matrix. If 2 and A are now the esti-
mates based on this method, one wants to decide whether the elements of R - 2- "
are sufficiently near zero. Frequently, rules of thumb are used, such as deciding the ele-
ments are sufficiently near zero if each element is within .05 of being zero. It is obviously
difficult to investigate the theory of such rules.

8.2. Determination of the number offactors (VI). In many cases the investigator does
not know the number of factors. He may not even be in the position of postulating a

specific value of m. In such situations the statistical problem is not one of testing the
hypothesis that m is a given number, but rather of determining an appropriate number
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of factors. The investigator wants to decide the smallest number of factors such that the
corresponding model fits the data.
What is desired is a multiple decision procedure. Such a procedure could be described

by a function h(A), that takes on the values 0, 1, - , M, where M is the maximum
number of factors that could be needed. One would like such a function that had some
desirable properties. Unfortunately, there is no such procedure for which we have an
adequate statistical theory, even an asymptotic theory.

In a situation such as this it is common practice to make a sequence of tests. In this
case one might test the hypothesis that m = mo against the alternative that m > MO; if
this hypothesis is rejected, test m = mo+ 1 against the alternative m > mo + 1, etc. How-
ever, even if we know the significance level of each test separately, we do not know the
probabilities associated with the entire procedure; that is, if m* is the true number of
factors, we do not know (even asymptotically) what the probability is that our procedure
leads to the decision m = m*. Perhaps all that can be said is that the probability of say-
ing m > m* (_ mo) is not greater than the significance level of the test of m = m*.

Another kind of procedure that might be considered is another sequence of tests,
namely test hypotheses m = mo against the alternative m = mo + 1, if this is rejected
test m = mo + 1 against m = mo + 2, etc. In the case of likelihood ratio tests, this
would involve the criterion Urn - U.,o+,, then U,,+, - Umo+2, etc. However, here we
do not know the asymptotic distribution of the criterion.

Using a sequence of likelihood ratio tests is computationally difficult. For at each
stage one must compute 2 and P for a value of m and at the next stage one must com-
pute another 2 and P.

In practice ad hoc rules are frequently used in dealing with R, such as using a rule of
thumb to determine 2, then using the centroid method to estimate successively columns
of A until the elements of R - ± - A' are sufficiently small, say within .05 of being
zero. We do not know the statistical properties of such procedures. It has also been pro-
posed that after following such an ad hoc procedure, the investigator then use the likeli-
hood ratio test to test the hypothesis that m is equal to the number determined by the
ad hoc procedure. Again we do not have any statistical theory for the procedure.

8.3. Tests of hypotheses (VII). There are many hypotheses about A and 2 that an
investigator might consider. For example, he might be interested in whether a specified
Xia is zero, that is, whether a given factor does not enter a given test. In this connection,
he might also want a confidence interval for a specified Xi. In principle, it is possible to
give a large sample procedure in such cases if one has a consistent estimate which is
asymptotically normally distributed, if one knows the theoretical asymptotic variance
(in terms of A and 2), and if one has consistent estimates of the parameters involved in
the asymptotic variance. Unfortunately, in practice this is extremely difficult because
the asymptotic variances are complicated functions of the parameters. It might be noted
that when A is identified by arbitrary mathematical conditions (such as diagonality of
A'1-1A), these hypotheses do not have much significance.

Another hypothesis that might be of interest is the hypothesis that all factor loadings
for a specified test are zero. In our model this is equivalent to the hypothesis that the
specified test score is independent of the other test scores. Such a hypothesis can be
tested by using the multiple correlation coefficient between the specified test and the
other tests.

Another hypothesis is whether a given tetrad difference is zero. This is relevant to the
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question of whether some four tests meet the conditions for a single factor model. Al-
though a fair amount of work has been done on this problem, we shall not treat it be-
cause we are interested here in problems for a general number of factors.

9. Problems of statistical inference: Estimation of factor scores (VIII)

If one postulates a model where the factor scores are not random, then the observed
test score vector for the ath person is an observation on Afa + Js + U, wherefa is a vec-
tor of parameters. Given a sample of test score vectors, one from each of N individuals,
one can ask for estimates of the N factor score vectors, fi, * *, fN. If one postulates a
model where the factor scores are random, one can consider the conditional distribution
of the set of test score vectors given that the factor score vectors are fixed vectors,
fi, * * *, fN. Then this conditional distribution is the same as the distribution with non-
random factor score vectors.

As was indicated in section 7.6, we cannot apply the method of maximum likelihood
to the problem of simultaneous estimation of 2, A, 1s, and fi, * fN. A reasonable pro-
cedure seems to be to estimate 2, A and ,u and then consider estimating fi, * fN as-
suming that 2, A and u are known and are equal to the estimates 2, A and ,u. Under the
assumption of normality, we can consider the likelihood of xi, - - *, XN (given A, 2,
and ,u) and maximize it with respect to fi, , fN. This is equivalent to minimizing

p ( iJi
(9.1) 2 a= 1, ,N.

This amounts to a weighted least-squares problem in which xi - ,i are the dependent
variates, Xi, are the independent variates and f,a are the unknown coefficients [5]. The
estimated vectorfa is

(9.2) fa = (A'21Aft1A'2-(xa->L)
This estimate has the usual properties of a least-squares estimate. It is unbiased and each
component of the estimate has minimum variance of all linear unbiased estimates. It
will be observed that the coefficients of the estimates depend on A and 2; these would
not change if a selection on the basis of factor scores was made.

Another approach has been suggested by Thomson [21]. If off' = I, the covariance
matrix of X and f is

(*) g( ~~~~f)(f ) ( A' I)

Then the regression of f on X is A'(Z + AA')-'X - (I + r)-1A'2-1X. The estimate
of fa is

(9.4) fa = (I + F)1A'2-(x1-

The vth component of this estimate is vy,/(l + -Y,,) times the vth component of (9.2)
when r is diagonal.

One might also ask for an estimate such that = I. Now let us find esti-

mates that have this property by minimizing E (xa- - Afa) '2-1 (xa- - fa)
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under the restrictions that ff.'= NI . We minimize

(9.5) , _(xi-x-Af.)'2-'(x.-x-Afl) +tr 0(ffaia- NI),

where 0 is a symmetric matrix of Lagrange multipliers. Then

(9.6) fa = (A'i2-1A + 0)-'A'Z-i(x -x),

where A'2-'A + 0 is the symmetric square root of A'2-A2-'A. If A and 2 are the esti-
mates by the method of section 7.2 then A'2;-A2-'A = r(I + r) and (9.6) is

(9.7) Ia = [r(I+ r)]1-/2A'2-(xa--) .

If we want 2fafa = NM, where M is specified, then A'2-'A + 0 must satisfy

(9.8) (A'2-'A + 0)M(A'2-1A + 0) = A'2-'A2-1A .

We note that if one assumes 2 = e2I and that the factor vectors are nonrandom, then

Xi - M = S i,f-va and the variance of Xi,, is o.2. Then the role of tests and individu-

als can be interchanged. Whittle has shown that under suitable identification conditions
(including E f,.fra= 0 for v 4 ,B) the estimates of f_ involve the principal compo-

nents of E (xia- i) (xi- i) -

PART II. PROOFS OF SOME NEW RESULTS

10. Maximum likelihood estimates for random factor scores when A is identified
by specified zero elements

THEOREM 10.1. Let x1, . , xX beN observationsfrom N(,, 'I), where T = AMA' + 2.
Let mii = 1 and Xia =, i = i(l, a), Xi(pa a), a = 1, * ,m. Let

N

NA = E (x. - i) (xa-) '. The maximum likelihood estimate of IA is , = i and the
a=l

maximum likelihood estimates of A, M and 2 are given by

(10.1) diag (A - 2-AgA') = 0,

(10.2) J'A = O,

(10.3) A'2-1A - A' - A'±-1A9k' = (M-1 + A'2-1A)J'2,

where jia = 0, i FF i(1, a), - .X i(pa, a), a = 1, , m.
PROOF. The logarithm of the likelihood function of I, given i= x, and divided by

N/2 is

(10.4) 0 = p log 27r -log |I'I -tr -'A .

The partial derivative of 0 with respect to #h, (where 4hg is not assumed to be 4',h) is
the g, hth element of

(10.5) TrAJr - I.
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Then

(10.6) 'goa4pgh
d ¢ii EI: avii z+a h * _fii

g_o, h a4 h C u,ga',h,hh(10.7) am4, ao,I a0ghg

_____ 8+ a40=# 2 zm^&a (y7Aug'a0,''7,hP $g")8~~~~9 gv g'hh h'hX,4,ah0'P.p g, h

(10.8) ax 4910Qh/ 9h a)ai *gi

where VI- = (419h). Let

(10.9) YlA'(41A4 l_- ) -

When we set (10.6), (10.7), and (10.8) equal to 0, we obtain

(10.10) diag (tlAr'-1) = 0,

(10.11) A'(A '-1- -)A = D,

(10.12) ji. = 0, i 76 i(l, a), i(p., a), a = 1, Mm,

where D is diagonal. The last set of equations states that J has O's where A is not speci-
fied to have O's.
Now let us simplify these equations; in particular, we want to express t-'At'-' -

4-i differently. Multiplication of (10.11) on the left by Al and (10.9) on the right by A
gives

(10.13) MD=J'A.

The diagonal elements of J'A are

(10.14) Ejia)xia= 0

because either jia = 0 or Xi. = 0. Thus the diagonal elements of RD are

(10.15) hdac =dacL= 07

and therefore D = 0 = J'A. Multiplication of (10.9) on the right by ' gives

(10.16) lA'(4''A - I) = J'' = J'(2 + ARA') = J'2

because J'A = 0. Then

(10.17) (I + MP)J'2 = (I + MA/2-1A)A .If-1A-I)
= ]AI';-I(t + ARAk)(41A -I)
= itiT -'(A - 4) .

From this we derive (10.3). Now we can write

(10.18) A - = ' - I)
= (t + AlA')(4'--A - I)
= (4-1A - I) + AJ'2
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by (10.16). This can be written as

(10.19) A - ' = r(l1A41--1)+ AJ'z
±(4-1AxP-1- 4-1)± + VJA' + AJ'2 .

The diagonal elements of 2JA' and AJ'2 are 0 because aiii Xi.jia= 0 since jia isO

if Via is not 0. Then (10.19) implies (10.1).
We can find another set of equations for the estimates by eliminating J from (10.2)

and (10.3). Multiplication of (10.3) on the right by ±-1A gives

(10.20) A'k-1A -lA - f - PfM = 0

because J'A = 0. Let IK = A'2-1AlA. Then

(10.21) (I+l C)= P-lk

and (10.17) gives

(10.22) J2 = g-1fMAP-1(A - +)
- K-'tMA'±-1(A - 2- AMA')
- 1Z-' t(A'2 - &A' - fMA')
- -1f32(Ak-1A - (I + PA)A')
- 1-1fiQ(A'k±-1A - I-1A') -

From (10.21) we also have lPf = P-1Z-I,- ? Pl = P-1 - -1, and (10.22) is

(10.23) J'2 = (P-1 - g-1)(Ak±-1A - gRP-lA) .

Then the estimates are defined by (10.1), (10.21) and the equations where the elements
of (10.23) are set equal to zero if the corresponding element of A' is not assumed zero.

Let us consider a special case of m = 2. We order the rows of A so that

(10.24) A =(a 0)_
Then

(10.25) J=(d 0).
We can write (10.2) as

(10.26) J'A=K( d')=0,
and (10.3) as

(10.27) (,0)O,2- A-(o bt)- (o 0°) -1 (60 °)( 1 2) (o °b)

[ +(O b' (O b)]c' O
If we let

(10.28) 2(t' 2)' A=(All A12)'
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then we have

(10.29)
I All I±1J2 Id ) w2l * 1a02

[_1mm2 CtS1 1 (1 2 + dI1iid) d'-1

'A,,b-'A2+ 2 61 11mm2 62

These can be written

d'2-1l l-a- (a4" 1a) A' - 1m2 621 1 = ( 1m2 1 ' 2

12~~~~~~~~~21

(10.30) /_ 1, 1~

b22lAl-6 2 -lb*2d=(-# +?h -l)212

L'24lA22 16' '=2222

12

11. Estimates for nonrandom factor scores when AA' is unrestricted

Here

(11.1) XQ = AfA+UQ=+/Aad,--N
(1 1.2) tXQ= Afa+I -

We assume

(11.3) EfQ~=0,X
a-1

(10.30)N- '=M

Q-1
Let

N

(11.5) A = N_~1: f.(x-)(QX .
Q-I

In (11.4) and (11.5) we have altered previous definitions by replacing N by N - 1.
Then (N - 1)A has the noncentral Wishart distribution with covariance matrix Z,
means matrix AMA', and N - 1 = n degrees of freedom. Let ki, , km be the non-
zero roots of

(11.6) IAMA' - kA-12; = O

Then [3] the likelihood function of A can be written2

(11.7) C 2 1-n/2 A (n-P-1)/2e-n/2 tr Z-1A-n/2 tr MA'Z-Af I- ZZ' (n-2m-l)/2en tr K!ZdZ

2 In [3] the roots should have been defined by the equation T - A-12 = 0.
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where the integration of the m X m elements of Z is over the range I - ZZ' positive
definite and

(11.8) gK/2= O k . .

O

We now take M = I. The indeterminacy remaining in A we remove for this particular
sample by requiring that A'2Y-1AM-A be diagonal. Then

(1 1.9) g = A'2-1A2-1A.
If

(11.10) AnF(K) = log f II - ZZ I (n-2m-.)/2e trK2zdZ,
then

(11.11) 2 logL logc+logJ2.-.1 +fn P 1 logIAA-tr Z-1A
-tr A'2;-'A+ F (K) .

The partial derivatives with respect to oii, the elements of 2-1, and Xi,, the elements
of A, are

(
2

log L
(11 ~~~~~i. l2 ii-a-.-_ 2 + )2E+?Fk (K) I;)i.X^je.o4iaj

d-~log L
(1 1.13) d =-= 2&Xii)+ 2Fka (K) S iaji^j

We set these derivatives equal to 0 to define the maximum likelihood estimates. These
derivatives set equal to 0 give
(11.14) diag 2 = diag (A + AA' - 2AF*A'Z2'A),
(11.15) 2-'A = 21A -1AF*,
where F* is the diagonal matrix composed of the partial derivatives of F(K). When we
multiply (11.15) on the left by A', we obtain
(11.16) Pf=1?F*,
which shows that P is diagonal. Then (11.15) is
(11.17) AZfl= A2-1A.

From (11.14) and (11.15) we obtain
(11.18) diag 2 = diag (A + A' - 2Ak') = diag (A - AA').
The estimates are then defined by (11.9), (11.16), (11.17), (11.18), the requirement that
k be diagonal and the definition of the diagonal elements of the diagonal matrix of F*as
the partial derivatives of (11.10) with respect to the diagonal elements of K = K.

Equation (11.17) indicates that the diagonal elements of (F*)-l =f must be m
roots of
(11.19) IA-021 = 0,
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whereas in section 7.2 the m roots are the diagonal elements of I + P. F* is a compli-
cated function of i = A'-lA2-1A.
We can show, however, that the estimates given in section 7.2 differ from the solution

of the above equations (for a given A) by amounts smaller than order 1/N/n. To show
this we make an asymptotic evaluation of F*.

THEoREpEm 11.1. For a given positive definite diagonal matrixH

(11.20) Ii.n [OF() _-1+V1 4h,] 0
n +CD [ ah. 2h. I

uniformly in HforH in a bounded set, where hk is the ath diagonal element ofH and F(H)
is defined by (11.10).
The proof of this theorem is too complicated to give here. Using this result in (11.16)

we have

( 11.21) -\- {P _[I + (I + 49)1/2]/21 - 0

uniformly for g in a bounded set. Now if we replace (11.15) by

(11.22) f = [-I + (I +4R)1/2I/2

the solution of the equations will differ from the previous solution by amounts smaller
than order 1/V'n (because the solutions are continuous). However, (11.22) is equivalent
tot = f(I + P) and then the solution is the one of section 7.2. The errors are uniformly
of order o(1/ Nn/) for A in a bounded set and for large enough n the probability that A is
in a set including I is arbitrarily near one. Hence

THIEoREm 11.2. If A converges stochastically to a positive definite matrix, then n times
the difference between the estimates of A and 2 defined in this section and the estimates de-
fined in section 7.2 converge stochastically to 0.

12. Asymptotic normality of estimates

In this section we shall prove that v'N&(A - A) and x/N(± - 2) defined by (7.4) to
to (7.7) are asymptotically normally distributed when A converges stochastically to
I = 2 + AA' and 'VN(A - 1) is asymptotically normally distributed. In particular,
this is true when the observations xi, X2, - are drawn from N(s, 'I). Let
(12.1) ¢ = 2-A(A'X-1A)-1Af .

THEOREm 12.1. If 5i | # 0, where (oi,) is defined by (12.1), if A and 2 are identified
by the condition that A':;1A is diagonal and the diagonal elements are different and ordered,
if A converges stochasticaUy to *I and if VIN(A - I) has a limiting normal distribution,
then VNx/(A - A), VN(2- 2) defined by (7.4) to (7.7) have a limiting normal distribu-
tion.

PROOF: First we show that A converges stochastically to A and 2 converges stochasti-
cally to Z. The estimates A, 2 are defined as the matrices satisfying A*'L*-lA* being
diagonal and maximizing

(12.2) f (A, 2*, A*) =
2

log L (A, 2*, A*) =-p log 2w -log 12* +A*A* I
-tr A (2* +A*A*)l.
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Now

(12.3) f(A, 2*, A*) --f(AA' + 2, 2,*A*)
uniformly in probability in a neighborhood of 2, A andf(AA' + 2, 2, A*) has a unique
maximum at 2* = 2, A* = A. Because the functions are continuous, the 2 A* maxi-
mizing f(A, 2, A*) must converge stochastically to 2, A.
To prove the theorem we need only to prove that A and 2 are functions of A that

have continuous first derivatives in a neighborhood of A = I. Since the equations de-
fining A and 2 are rational functions of A, 2 and A set equal to zero, they are polynomial
equations; the derivatives will be continuous unless they become infinite. The remainder
of the proof is to show that they do not become infinite (at A = I).
A and 2 are defined implicitly as functions of A, say by

(12.4) H(0,,a, a) = O,
where X is A arranged in a vector, Of is 2 arranged in a vector and a is A arranged in a
vector.

The solution to (12.4) is X = )(a), a = a(a). Then
(12.5) Hj[\(a), &(a), a]a(a) + H;[?(a), &(a), a]aa(a) + Ha[X(a), &(a), a] O,

where HA is the matrix of partial derivatives of the components of H(\, a6, a) with re-
spect to the components of A, Va(a) is the matrix of partial derivatives of the components
of \(a) with respect to the components of a, etc. We need to show that

(12.6) HW(X, a., O'Aa(4) + H;(X, IT, 4')&a(4') + Ha(X, a., ,t) = 0

can be solved for &.(),6a(O,). Our method of computation is to expand H(X, &, a) =
H(X + 1, a. + s, 6 + a*) in terms of 1, s, and a*, consider only linear terms, and show
(under the conditions of the theorem) that the resulting linear-equations can be solved for
I and s in terms of a.

Let A = A + L, 2 = 2 + S, A = 2 + AA'+ A*, P = r+ G. Then (7.5) can be
written in linear terms as

(12.7) diag S = diag (A* -AL' - LA') .

Since S-1 = (2 + S)-1 is -2-IS- to linear terms in S, (7.6) can be written (in
linear terms) as

(12.8) r + G = r + L'2-1A+ A'ZIL -A'2-1S2-1A,
and (7.8) can be written (in linear terms) as

(12.9) Ar + AL'2-1A + AA'Z-1L - AA'Z-1SZ-'A + Lr
= AA'Z-'A + AA'Z-L - AA'2-5S2-lA + A*-lA - S-1A .

Then (12.9) and (7.7) can be written (in linear terms) as

(12.10) Lr + AL'Z-1A + SZ-1A = A*Z-1A,
(12.11) nondiag (L'Z-1A + A'Z-'L - A'X-1SZ1A) = nondiag 0.

We now show that (12.7), (12.10) and (12.11) can be solved for S and L under the
conditions of the theorem. From (12.10) we derive

(12.12) L = A*2-lAr-l - S-Ar-l - AL'VZ1Ar-
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and

(12.13) LA' = A*2;-H-S2;-H-AL'Z-'H,
where H = Ar-'A'. Using (12.13) we have

(12.14) A*-LA'- AL' = A*- A*2-H+ S2;-H + AL'X-1H
-H2-A * + H2-1S + H2-LA'

= A*-A*2-1H+ S2-1H + AL'Z-1H
-H 1A * + H-1S + H2v1(A *Z-1H
- SZ-1H - AL'Z-1H).

Since H2-1A = A, (12.14) can be combined with (12.7) to give

(12.15) diag [(2-H)-lS2;-l(2-H)] = diag [(2-H)2;-A*2-l(2-H)]

or

(12.16) diag P2-1S2-4 = diag b21A .

The ith component equation is

(12.17) 4=a, 0, g Oih/e7

This can be solved if the matrix Z with elements jj = 4is nonsingular.
Equation (12.11) can be written as

(12.18) nondiag (Q + Q') = nondiag V,

where Q = L'Z-1A and V = A'Z-'SZ-1A. Multiplication of (12.10) on the left by
A'1-1 gives

(12.19) Q'r + iQ = U- V,

where U = A'2I-A*2-lA. The a, ath equation of (12.19) yields

Ua - Va(12.20) qaa= -`
9

and the a, ,Bth equations of (12.18) and (12.19) yield

(12.21) q-= u
- VaP - VY ,B.

Substitution of Q = L'2r'A in (12.12) gives L in terms of A* and S. This proves the
theorem.

From the above formulas we can find the asymptotic variances and covariances of the
estimates. When the observations are drawn from a normal distribution with covariance
matrix I,

(12.22) - C (agh- gh) (akI- kI) = N aa

= 094h + 4gP0hk -
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and this is the limiting covariance of A* and A*,. The solution of (12.17) can be ex-
pressed as

(12.23) 2Sk tkaig ih
Ick i, g, h 0Ooam

where (ki) - Then it is a straightforward computation to find that the limiting
covariance of skklo-/ and sgl/orf' is 2 tkg. This shows that

(12.24) lim NC (&k- afkk) (#- Tgg) = 2 uu0a
N -4 0

The limiting covariances of elements of A are complicated and depend on the identifi-
cation conditions. We give one formula to show how involved such expressions are and to
show that they are similar to formulas obtained in other problems involving characteris-
tic vectors ([16], for example). Let X, be the Pth column of A and Xv the vth column of A.
Then

(12.25) 'vv lim NC (x -X) (0 - xv)' = M,2-1 ('+ 4X,X) 1-1M,
N 0

+P (Xk , kgXg,)PX
where (XktkgXg,) is a matrix with indicated elements and

(12.26) M =2-- XvX - 1

(12.27) P1=2-
The method of estimation of section 7.4 (principal components of A -2) can be

studied in a similar fashion and one can derive the following result:
THEopEmm 12.2. If O2i | 6 0 where 0 = I - A(A'A)-1A', if A is identified by the con-

dition that A'A is diagonal and the diagonal elements are different and ordered, if A con-
verges stochastically to i!, and if ViN(A - I) has a limiting normal distribution, then
-lN--(A - A), -/2Ni(2 - 1), defined by (7.22) to (7.25), has a limiting normal distribution.
We can also prove that when A is identified by requiring certain elements to be 0 then

the estimates are also asymptotically normally distributed. Instead of requiring mij = 1,
we can normalize each column of A by a restriction on that column (for example, re-
quiring Xv, = 1, P = 1, - * *, m, if none of these is specified to be 0). Then all of the re-
strictions are on A. This is desirable because then we can compare populations that
differ only in M (see section 7.9) and we can compare the case of random and nonrandom
factor scores. We can then prove a striking and powerful theorem. Let

(12.28) M(N) =fa-f(N)[fa- J(N)],
a-1

(1 2.29) o ii (N) = Nz[uia- fi (N) ]2
a-1

where

(I12.30) (N)= fat i (N) =i -i.
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and
1 N

(12.31) bij (N) =A -N [Uia-uX (N) I [UQuj. a (N) ], i F j,

and let 2(N) be the diagonal matrix with (12.29) as elements.
THEOREM 12.3. If A is identified by specified zero elements, if the identification and

normalization is by restrictions on A, if M(N) and 2(N) approach limits in probability
and if bij(N) have a limiting joint normal distribution with zero means, then VNK(A - A),
v\7VN[At - M(N)] and VN[2- Z(N)] are asymptotically normally distributed, where
A, SI, 2 are the maximum likelihood estimates of section 7.6 normalized by the restrictions
on A. If

(12.32) lim ,gbij(N) bkl(N) = plim aii (N) aj,(N) , i= k, j=I
N-c N C

i=l, j= k
= 0, otherwise,

then the parameters of the limiting normal distribution of the estimates depend only on A,
plim M(N) and plim 2(N).

The proof of this theorem is too involved to give here. It should be noted that iff and
U are normally distributed, the theorem holds.
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